Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Frontiers in Optics, FiO 2022 ; 2022.
Article in English | Scopus | ID: covidwho-2229803

ABSTRACT

FRET is ascribed to the spectral overlapping of upconversion luminescence and the absorption of AuNPs. This experiment enables early-stage coronavirus detection. The results show a sensitivity of 100 fM for the detection of COVID-19 DNA. © 2022 The Author(s)

2.
Biosens Bioelectron ; 222: 114987, 2023 Feb 15.
Article in English | MEDLINE | ID: covidwho-2235818

ABSTRACT

Accurate COVID-19 screening via molecular technologies is still hampered by bulky instrumentation, complicated procedure, high cost, lengthy testing time, and the need for specialized personnel. Herein, we develop point-of-care upconversion luminescence diagnostics (PULD), and a streamlined smartphone-based portable platform facilitated by a ready-to-use assay for rapid SARS-CoV-2 nucleocapsid (N) gene testing. With the complementary oligo-modified upconversion nanoprobes and gold nanoprobes specifically hybridized with the target N gene, the luminescence resonance energy transfer effect leads to a quenching of fluorescence intensity that can be detected by the easy-to-use diagnostic system. A remarkable detection limit of 11.46 fM is achieved in this diagnostic platform without the need of target amplification, demonstrating high sensitivity and signal-to-noise ratio of the assay. The capability of the developed PULD is further assessed by probing 9 RT-qPCR-validated SARS-CoV-2 variant clinical samples (B.1.1.529/Omicron) within 20 min, producing reliable diagnostic results consistent with those obtained from a standard fluorescence spectrometer. Importantly, PULD is capable of identifying the positive COVID-19 samples with superior sensitivity and specificity, making it a promising front-line tool for rapid, high-throughput screening and infection control of COVID-19 or other infectious diseases.


Subject(s)
Biosensing Techniques , COVID-19 , Humans , COVID-19/diagnosis , SARS-CoV-2/genetics , Point-of-Care Systems , RNA, Viral/genetics , Luminescence , Smartphone , Biosensing Techniques/methods , Sensitivity and Specificity
3.
Frontiers in Optics, FiO 2022 ; 2022.
Article in English | Scopus | ID: covidwho-2218621

ABSTRACT

FRET is ascribed to the spectral overlapping of upconversion luminescence and the absorption of AuNPs. This experiment enables early-stage coronavirus detection. The results show a sensitivity of 100 fM for the detection of COVID-19 DNA. © 2022 The Author(s)

4.
Mater Des ; 223: 111249, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2181398

ABSTRACT

Multiplexed detection is essential in biomedical sciences since it is more efficient and accurate than single-analyte detection. For an accurate early diagnosis of COVID-19, a multiplexed detection strategy is required to avoid false negatives with the existing gold standard assay. Nb2CTx nanosheets were found to efficiently quench the fluorescence emission of lanthanide-doped upconversion luminescence nanoparticles at wavelengths ranging from visible to near-infrared spectrum. Using this broad-spectrum quencher, we developed a label-free FRET-based biosensor for rapid and accurate detection of SARS-CoV-2 RNA. To target ORF and N genes, two types of oligo-modified lanthanide-doped upconversion nanoparticles can be used simultaneously to identify-two sites in one assay via upconversion fluorescence enhancement intensity measurement with detection limits of 15 pM and 914 pM, respectively. Moreover, with multisite cross-validation, this multiplexed and sensitive biosensor is capable of simultaneous and multicolor analysis of two gene fragments of SARS-CoV-2 Omicron variant within minutes in a single homogeneous solution, which significantly improves the detection efficiency. The diagnosis result via our assay is consistent with the PCR result, demonstrating its application in the rapid and accurate screening of multiple genes of SARS-CoV-2 and other infectious diseases.

5.
Mater Des ; 223: 111263, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2069463

ABSTRACT

Here, we firstly introduce a detection system consisting of upconversion nanoparticles (UCNPs) and Au nanorods (AuNRs) for an ultrasensitive, rapid, quantitative and on-site detection of SARS-CoV-2 spike (S) protein based on Förster resonance energy transfer (FRET) effect. Briefly, the UCNPs capture the S protein of lysed SARS-CoV-2 in the swabs and subsequently they are bound with the anti-S antibodies modified AuNRs, resulting in significant nonradiative transitions from UCNPs (donors) to AuNRs (acceptors) at 480 nm and 800 nm, respectively. Notably, the specific recognition and quantitation of S protein can be realized in minutes at 800 nm because of the low autofluorescence and high Yb-Tm energy transfer in upconversion process. Inspiringly, the limit of detection (LOD) of the S protein can reach down to 1.06 fg mL-1, while the recognition of nucleocapsid protein is also comparable with a commercial test kit in a shorter time (only 5 min). The established strategy is technically superior to those reported point-of-care biosensors in terms of detection time, cost, and sensitivity, which paves a new avenue for future on-site rapid viral screening and point-of-care diagnostics.

6.
Nanotechnology Reviews ; 11(1):2110-2122, 2022.
Article in English | ProQuest Central | ID: covidwho-1875163

ABSTRACT

Food safety has become a topic of global concern in the recent decades. The significant food safety incidents occur from time to time around the world, seriously threatening the public health and causing extensive economic losses. In particular, the occurrence of COVID-19 highlights the importance of the food safety for the public health. Therefore, there is an urgent need to establish a fast, simple, sensitive, and efficient method for the detection of food safety. In recent years, the upconversion (UC) nanotechnology has been widely used in the field of food detection. The UC fluorescence analysis technology possesses the advantages of ultra-sensitivity detection, non-invasiveness, light stability, etc., and has broad application prospects in the field of food safety. After cladding and surface modification, it can be combined with other substances through a variety of mechanisms, such as electrostatic interaction, thereby expanding its application in the food safety detection. Thus, overall, there is a vital need to evaluate and utilize the potential of UC nanoparticles in the field of rapid detection of food safety.

SELECTION OF CITATIONS
SEARCH DETAIL